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Abstract

We consider finite dimensional complex Lie algebras. We generalize the concept of Lie derivations via certain complex
parameters and obtain various Lie and Jordan operator algebras as well as two one-parametric sets of linear operators. Using
these parametric sets, we introduce complex functions with a fundamental property — invariance under Lie isomorphisms. One of
these basis-independent functions represents a complete set of invariant(s) for three-dimensional Lie algebras. We present also its
application to physically motivated examples in dimension 8.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of finite dimensional complex Lie algebras is an important part of Lie theory. It has several applications
to physics and connections to other parts of mathematics. With an increasing amount of theory and applications
concerning Lie algebras of various dimensions, it is becoming necessary to ascertain applicable tools for handling
them. The miscellaneous characteristics of Lie algebras constitute such tools and have also found applications:
Casimir operators [1], derived, lower central and upper central sequences, Lie algebra of derivations, radical,
nilradical, ideals, subalgebras [7,14] and recently megaideals, [13]. These characteristics are particularly crucial
when considering possible affinities among Lie algebras.

Physically motivated relations between two Lie algebras, namely contractions and deformations, have been
extensively studied; see e.g. [3,9]. When investigating these kinds of relations in dimensions higher than 5, one can
encounter insurmountable difficulties. Firstly, aside from the semisimple ones, Lie algebras are completely classified
only up to dimension 5 and the nilpotent ones up to dimension 6. In higher dimensions, only special types, such as
rigid Lie algebras [4] or Lie algebras with fixed structure of the nilradical, are classified [15] (for a detailed survey of
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classification results in lower dimensions see e.g. [13] and references therein). Secondly, if all available characteristics
of two results of contraction/deformation are the same then one cannot distinguish them at all. This often occurs when
the result of a contraction is class of Lie algebras with one parameter or more.

The aim of this article is to partially overcome these obstacles and to add new objects to the existing set of
invariants. Number of Casimir operators, dimensions of radical, nilradical, lower central sequences, etc., are all
invariant or — equivalently — basis independent. However, in this article we pursue different kinds of basis-independent
characteristics — certain complex functions. These invariant functions, which arise from the concept of so called
(o, B, y)-derivations, then represent a very powerful tool for the description of Lie algebras, very effective and
essential when dealing with their parametric continuum.

In Section 2, we generalize the concept of derivation of a Lie algebra; we introduce («, B, y)-derivations and show
their pertinent properties. All possible intersections of spaces containing these derivations are investigated. Examples
of low dimensional Lie algebras are presented.

In Section 3, we introduce two invariant functions corresponding to (&, 8, y)-derivations. We demonstrate, on all
three-dimensional complex Lie algebras and on physically motivated examples in dimension 8, how these functions
effectively enlarge the set of ‘classical” invariants.

In Section 4, we briefly review other generalizations of derivations, make a note on a computation of (o, 8, y)-
derivations and make further comments.

2. (a, B, y)-derivations

In this article let £ denote the finite dimensional Lie algebra over the field of complex numbers C and End(L)
the associative algebra of all linear operators on the vector space £. The space End(£), endowed with standard Lie
commutator [A, B] = AB — BA, is denoted as usual by gl(£) and the space End(L), endowed with Jordan product
AoB = %(AB + BA), is denoted by jor(L). In this way, any subalgebra of End(£) forms also a subalgebra of gl(L)
and jor(L£). We also adopt notation for the center C (L) and for the derived algebra £* = [L, L].

2.1. Properties and structure of (o, B, y)-derivations

Recall that a derivation of L is a linear operator A € End(L) such that forall x, y € £
Alx, y] = [Ax, y] + [x, Ay] (1)

and the set of all these derivations, denoted by der(L), forms a Lie algebra of derivations. Several non-equivalent
ways of generalizing this definition have been recently studied [2,8,5]. However, we will bring forward another type
of generalization.

We call a linear operator A € End(L) an («, 8, y)-derivation of L if there exist «, 8, y € C such that for all
x,yeLl

aAlx, y] = BlAx, y] + y[x, Ay]. ()
For given «, 8, y € C we denote the set of all («, 8, y)-derivations as D(«, 8, y), i.e.
D(a, B,y) = {A € End(L) | ¢Alx, y] = BlAx, y] + y[x, Ay, Vx,y € L}. 3

Let us focus on this set and show some its properties. It is clear that D(«, 8, y) is a linear subspace of End(L£) and it
follows immediately from (2) that for any ¢ € C \ {0} it holds that

D(a, B, y) = D(ae, Be, ye) = D(a, v, B). “)

Furthermore, we have the following important property:

Lemma 2.1. Forany a, 8,y € C,
D(e, B.y) =DO.—y.y =B)NDQRa. B+ y. B+ ). ®)
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Proof. Suppose any «, 8, y € C are given. Then for A € D(«, B, y) and arbitrary x, y € £ we have

aAlx, y] = BlAx, y] + y[x, Ay] 6)
aAly, x] = B[Ay, x] + v[y, Ax].

By summing and subtracting Eq. (6) we obtain

0=(B—-py)([Ax,y] =[x, Ay] 7
2A[x, y] = (B + y)([Ax, y] + [x, Ay])

and thus D(«, B,y) C DO, B—y,y —B)NDR«, B+ v, B+ y). Similarly, starting with Egs. (7) we obtain Egs. (6)
and the remaining inclusion is proven. [J

Further, we proceed to formulate the theorem which reveals the structure of the spaces D(«, B, y); the three original
parameters are in fact reduced to only one.

Theorem 2.2. For any «, B,y € C there exists § € C such that the subspace D(«, B8, y) C End(L) is equal to some
of the four following subspaces:
(1) DG, 0,0).
) DG, 1, —1).
3) D, 1, 0).
@) D, 1, 1.
Proof. (1) Suppose 8+ y = 0. Theneither f =y =0or = —y #0.
(a) For B = y = 0 we have
D(a, B, y) = D(a, 0, 0).
(b) For B = —y # 0 we have according to (4) and (5)
D(a, B,y) =DO,8—y,y — B NDR«a,0,0) =D, 1, —1) N D(a, 0, 0).
On the other hand it holds that
D(a, 1,—1) =D(0, 2, -2) N D2, 0,0) = D(0, 1, —1) N D(, 0, 0)
and therefore
D(a, B,y) = D(a, 1, —1).

(2) Suppose B+ y # 0. Theneither 8 —y #0or 8 =y #0.
(a) For B — y # 0 we have

200
D(a,B,y)=DO,8—y,y —BNDRa,B+y,B+y) =D, 1,—1)0D(m, 1, 1)
and this is according to (5) equal to D(lg"‘Ty, 1,0),1i.e.

o
D(a, B,y) =D (m, 1, 0) .
(b) For 8 = y # 0 we have

D, B, y):D(%,l,l). O

Now we will discuss in detail the possible outcome of Theorem 2.2 which depends on the value of the parameter
s eC.

(1) D, 0, 0):
(a) For 6 = 0 we trivially get D(0, 0, 0) = End(L).
(b) For § # 0 the space D(1,0,0) is an associative subalgebra of End(L£), which maps derived algebra
L% = [L, L] to the zero vector:

D(1,0,0) = {A € End(L) | A(L?) =0},
and therefore its dimension is as follows:
dimD(1, 0, 0) = codim £ dim L.
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2) D, 1, —1):
(a) For 8§ = 0 we have a Jordan algebra D(0, 1, —1) C jor(L),
D, 1, —-1) ={A € End(£L) | [Ax, y] = [x, Ay], Vx,y € L}.
(b) For § # 0 we get Jordan algebra D(1, 1, —1) C jor(£) as an intersection of two Jordan algebras:
DG, 1,—-1) =D, 1,-1)ND6,0,0) =D, 1,—-1)ND,0,0) =D, 1, —1).
3) D, 1,0):
(a) For § = 0 we get an associative algebra of all linear operators of the vector space £, which maps the whole £
into its center C (L):

D(0,1,0) ={A € End(L) | A(L) C C(L)},
and its dimension is
dimD(0, 1,0) = dim £ dim C(L).
(b) For § = 1 the space D(1, 1, 0) is the centralizer of adjoint representation ad(£) in gl(L).

(c) For the remaining values of § the space D(§, 1, 0) forms, in the general case of Lie algebra £, only the vector
subspace of End(L). Thus, we have the one-parametric set of vector spaces:

D(@6,1,00 =D, 1, —-1) N D26, 1, 1).
4 D, 1, 1):

(a) For § = 0 we have a Lie algebra
D(O,1,1) ={A € End(L) | [Ax, y] = —[x, Ay], Vx,y € L}.

(b) For § = 1 we get the algebra of derivations of L,
D, 1,1) =der(L).

(c) For the remaining values of § the space D(8, 1, 1) forms, in the general case of Lie algebra £, only the vector

subspace of End(L).

2.2. Intersections of the spaces D(a, B, y)

Various intersections of two different subspaces D(«, B, ) also turned out to be of interest; therefore we
systematically explore all possible intersections of these spaces. However, all intersections of these spaces lead us
to only two new structures. The first one

D(1,0,0)ND(0,1,0) = D(,0,00 DG, 1,0) =D, 1,—-1) ND(, 1, 0)
=D1,1,-1)NDG,1,1) =D, 1,00 N D(y, 1, 0)52y
=D(@, 1,00 ND(y, 1, Daszy ®)

forms an associative algebra and is contained in all spaces D(«, 8, y). Its dimension is
dim(D(1, 0, 0) N D(0, 1, 0)) = codim £ dim C(L). 9
The second one is a new Lie algebra:
D(1,0,00NDO,1,1) =D(1,0,00NDG,1,1) =DG, 1, 1) N D(y, 1, sz . 10)
Other intersections lead to structures which we already have:
DA,1,-1)=D(1,0,00nDO,1,-1) = D(1,0,00n D(,1,-1) =D, 1,-1)Nn D, 1, -1)
DG, 1,00 =D(0,1,-1)NDG,1,0) =D, 1,-1) N D(25,1,1) = DS, 1,00 N D26, 1, 1). a1

For completeness we state that the space D(1,0,0) N D(O0, 1,0) forms an ideal in D(1, 1,0), D(1, 1, 1) and in
D(1, 1, —1); the space D(1, 0, 0)ND(0, 1, 1) is an ideal in D(1, 1, 1); the space D(0, 1, 0) forms an ideal in D(0, 1, 1)
and in D(0, 1, —1).

The structure of algebras D(1, 0, 0), D(0, 1,0)~and their intersection depends only on the dimensions of the
center and the derived algebra of L. If £ and L are the Lie algebras of the same dimension then the same
dimension of their centers implies D(0, 1, 0) = D(0, 1, 0); the coinciding dimension of the derived algebra implies
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D(1,0,0) = 5(1, 0, 0). Moreover, if £ and L are both indecomposable and dimensions of the centers coincide, as
well as the dimensions of derived algebras, then it holds that:

D(0, 1,0) N D(1,0,0) = D(0, 1,0) N D(1, 0, 0). (12)

2.3. Examples of («, B, y)-derivations

We present as illustration some examples of («, 8, y)-derivations for lower dimensional Lie algebras. Note
especially the form of the one-parametric subspace D(§, 1, 1), as it is significant later on.

Example 2.1. Consider a two-dimensional Lie algebra £, with a basis {e}, e2} and its only non-zero commutation
relation: [e, e2] = en.

—D(l,l,l):span(c{(? g),(g ?)]Eﬁz.
-po. 1L h=spanc {(§ 5). (7 §).(o %)} =0
- D(1,1,0) =D, 1, =) =spanc { (5 1)}

- D(1,0,0) N DO, 1, 1) = spang {(? 3)}

- D(5,1,0) = {0} for 6 # 1.

D6 LD =spang (1 9). ("5 0)} fors £o0.
- D(0, 1,0) = D(1,0,0) N D, 1,0) = {0}.
-D(1,0,0=spanc (5 0). (7 )} =22

- DA, 1,-1) = {0}.

Example 2.2. Consider a simple Lie algebra of the lowest dimension: s/(2, C).

- D, 1,1) = 512, C).
-D,1,1) =D(0, 1,0) = D(1,0,0) = D(1, 1, —1) = {0}.
1 0 0

-D(,1,0) =D, 1, —1) = spang {(0 1 0)
0

0 1
- D5, 1,0) = {0} for § # 1.
- D@, 1,1) = {0} for § # £1, 2.

1 0 o0
- D(2,1,1) = spang¢ {(0 1 0> }
0 0 1

00 01 0 0 0 1 0 0 0 0 0 0
—D(—l,l,l):spanc{< -2 0>,<0 2>,<0 0 0>,<2 0 0>,<0 0 0)},
0 1 0 0 0 0 0 0 0 1 0 1 0 0

3.1. Definition and properties of functions ¥ and ¢

(=Nl
(=}

3. Invariant functions

In this section we define complex functions with a pertinent property — invariance under Lie isomorphisms.
Suppose we have an arbitrary non-singular linear mapping o and this mapping represents an isomorphism between
two Lie algebras, say £ and £. That means that foro : £ — Landforall x,y € L

[x, vz =olo " x, 07y,
By rewriting definition relation (2) we have for A € D(«, B, )
aAlo”'x, 07 ylg = BlAo T x, 0yl +ylo T x, Ao
Applying the mapping o to this equation and taking into account that «, 8, y are in C then
aoc Ao '[x, ylz = Blo Ao 'x, yIz + y[x, 0 Ac 'y}, (13)

ie.cAoc ! e 5(0{, B, ). Thus, we easily arrive at the crucial result which we sum up as follows:
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Proposition 3.1. Let o : L — L be an isomorphism of Lie algebras L and L. Then the mapping p : End(L) —
End(L) defined for all A € End(L) by p(A) = o Ao~V is an isomorphism of associative algebras End(L) and
End(L). Moreover, for any o, 8,y € C,

p(D(«, B, 7)) = D@, B, )
holds.

Corollary 3.2. Forany «, B, y € C the dimension of the vector space D(a, B, y) is an invariant of the Lie algebra L.

Indeed, the possibility of new invariants as dimensions of various D(«¢, 8, y) is very promising; it seems timely
to list a summary of those spaces D(«, 8, y) whose dimensions do not depend on the dimensionality of well-known
substructures of £, such as the center C(£) and £2. The outcome of Theorem 2.2 and the discussion below it, relations
(10) and (12), yield:

(1) associative algebra D(1, 1, 0),

(2) Lie algebras D(1, 1, 1), D(0, 1, 1), D(1,0,0) N D(O, 1, 1),
(3) Jordan algebras D(1, 1, —1), D(0, 1, —1),

(4) one-parametric sets of vector spaces D(«, 1, 0), D(e, 1, 1).

Since the definition of («, B, y)-derivations partially overlaps other generalizations, some of these sets naturally
appeared already in the literature. Namely in [8], a considerable amount of theory concerning relations between
D(1, 1, 0) and D(0, 1, —1) has been developed (see also Section 4). In [10], the usefulness of the invariant dimensions
of the Lie structures D(1, 1, 1), D(0, 1, 1), D(1, 1, 0) and D(1, 0, 0)ND(0, 1, 1) as well as their mutual independence
has been shown. In this article we focus on one-parametric sets of vector spaces D(«, 1, 0) and D(e, 1, 1).

We use these one-parametric sets of vector spaces to define the invariant function of a Lie algebra £. Functions
v, ¢:C—{0,1,2,..., (dim £)2} defined by formulas

V(o) =dimD(a, 1, 1) (14)

¢(a) = dimD(e, 1, 0) (15)
are called invariant functions corresponding to («, 8, y)-derivations of a Lie algebra £. We observe that from the
relations (8), (9) and (11) it follows that

codim £ dim C (L) < ¢(a) < dimD(0, 1, —1)

(o) < ¥ Q2a)

codim £2dim C(L) < ¥ ().

From Proposition 3.1 it follows immediately that for two Lie algebras £ and £ it holds that
E%Zﬁtﬁz@ and ¢>=$.

Note that sometimes in the literature, the name “invariant function” denotes a (formal) Casimir invariant; its form
however depends on the choice of a basis of £. Here by invariant functions we mean rather ‘basis-independent’
complex functions, such as ¢ and ¢. Since the purpose of the functions ¥ a ¢ is to enlarge the set of ‘classical’
invariants which we list below, this terminology is well justified.

The classical method of identification of an (indecomposable) Lie algebra [14] boils down to computation of
derived series DXT1(£) = [D*(L), D*(L)], D°(L) = L, lower central series £+ = [£¥, £], £' = £, and upper
central series

ctly/che) = ceyckey), el = cL).

The dimensions of these ideals and the dimensions of the spaces of («, 8, y)-derivations are “numerical” invariants
of the Lie algebra as is the number of formal Casimir invariants 7(£) [1]. These characteristics, applied to radical,
nilradical and factors of Levi decomposition of L, also form invariants. We adopt the following notation:
inv(£) = (dim D*(£)) (dim £5) (dim C*(L)) (L)
[dimD(1, 1, 1),dim D(0, 1, 1), dim D(1, 1, 0),
dim(D(1,1,1) nD(0, 1, 1)),dimD(1, 1, —1), dimD(0, 1, —1)].
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Table 1
Indecomposable three-dimensional complex Lie algebras and their invariant function v
L Commutators inv(£L) Function v
Az g [ep, e3] = ey (310)(310)(13) 1 o
[6,6,3,5,3,4] V(o) 6

432 le1. e3] =ey, (320)(32)(0) 1 o 1

[ex,e3] =€y + ey [4,3,1,2,0,1] ¥(a) 4 3
Az 3 [er, e3] = e, (320)(32)(0) 1 a 1

[er,e3] =ep [6,3,1,2,0,1] ¥(a) 6 3
A3z 4 [er, e3] = e, (320)(32)(0) 1 a —1 1

e, e3] = —en [4,3,1,2,0,1] ¥(a) 5 4 3
A3 5(a) le1. e3] =ey, (320)(32)(0) 1 o 1 a 1

_ 0<lal <1

[er, e3] = aey, orla] = 1. Ima > 0 [4,3,1,2,0,1] ¥(w) 4 4 4 3
438 le1, e3] = —2es, 3)3)0) 1 o -1 1 2

le1.ea] =y, [e2.e3]1 =3 [3,0,1,0,0,1] ACY) 5 3 1 0

Blank space in the smaller table for function ¥ denotes a general complex number, different from all previously listed values, e.g. for A3 g it holds
that (o) =0, ¢ # —1,1,2.

3.2. Application of the invariant function \r to three-dimensional Lie algebras

Since among three-dimensional Lie algebras an infinite continuum already appears, it is clear that the finite set
inv(L) of certain dimensions, though useful, can never completely characterize Lie algebras of dimension higher than
or equal to 3. On the contrary, it turns out that the invariant function v alone(!) forms a complete set of invariant(s)
for indecomposable three-dimensional Lie algebras, as Table 1 shows. We use the notation for three-dimensional Lie
algebras as in [11]. We point out the case of A3 s5(a), where the function  is different for different values of the
parametera € C,0 < |a] < 1 or |a| = 1, Ima > 0, and thus distinguishes among non-isomorphic algebras in this
continuum. One may also find convenient that once one has some structure constants of any indecomposable three-
dimensional Lie algebra, simple computation of function ¥ allows an unambiguous identification in the list (see also
Section 4). We may also mention here that the invariant function ¢ has for A3 ; a single value ¢ (o) = 3, and for the
remaining algebras A3 ;, i = 2,..., 8, it holds that

sw={ 71

3.3. Application of the function { to some eight-dimensional Lie algebras

Example 3.1. Let us introduce two eight-dimensional complex Lie algebras L, L by listing their commutation
relations in the basis {eq, ..., esg}:

L [ei,e3] =es, [e1, ea]l = eg, [e1, es] = e7, [e1, e6] = e4,
_ ez, e3]l =e7, [e3,e5] = e, [es, 6] = 7
L e, e3] =es, [e1, eal = e, [e1, e6] = es, [e2, €3] = e7,
le2, e6] = e, [e3, e5] = eg, [es, ec] = e7.
These algebras are both indecomposable and nilpotent. They are both the result of a contraction of s/(3, C) and form
so called continuous graded contractions corresponding to the Pauli grading of s/(3, C) [12,6]. They appear on the
list in [6] named as £17,9 and L7 12. Computing their invariants we obtain

inv(£) (8,4,0)(8,4,2,0)(2,5.8) 2 [16,19,9,11,8,17]
inv(£) (8,4,0)(8,4,2,0)(2,5,8) 2 [16,19,9,11,8,17].

Here we observe that a unique characterization is still not attained. On the contrary, computing invariant functions
¢, ¥ and ¢, ¢ for algebras £ and L yields:
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o 0| -2 o 0|1 o 0| —

=

v) || 19| 17 | 16 ¢ || 16 | 9| 8 U || 19 ] 17 | 16

d@ || 1698

Since ¥ # J, we conclude that £ 2 L.

Example 3.2. We present Lie brackets for the indecomposable eight-dimensional nilpotent one-parametric Lie
algebra:

L(a) e, e3] =es, [e1,es] = —aeg, ez, e3] = e7, [e2, es] = e,
[e3, es] = eg, [e3,e7] = e, 0 < |a| < 1.

This continuum appeared as £1325(a) in [6]; however, the relations among its algebras remained unresolved there.
We achieve partial characterization by isolating two of its points, a = 0, —1, and thus obtain

inv(L£(0)) (8,4,0)(8,4,2,0)(2,5,8) 4 [21,23,10,14,9, 18]

inv(L(—1)) (8,4,0)(8,4,2,0)(2,5,8) 4 [22,22,10,13,9, 18]

inv(L(a)) a#0,—1 (8,4,0)(8,4,2,0)(2,5,8) 4 [20,22,10,13,9,18].

We summarize the tables of invariant functions ¢, and ¥, of L(a) as follows:

o 0 |1
¢a(a)| 16| 10 |9

a=0 a=1 a=—1 a#0,=xl
o 0 o 0| —1]1 o 0 |1 o 01| -al-1
Vo) 23 21 yn(e)| 2221 [ 20| 19| v_1(@)| 22| 22| 19| va(e)| 2220 20 | 20 |19

Finally, the invariant function v, provides us with a complete characterization of the continuum; or more precisely:
since fora, b # 0, £1, a # b, a # %, it holds that
Va(—a) =20 # yp(—a) = 19,
the relation L£(a) 2 L(b) is thus guaranteed.

Example 3.3. Like in the previous example, we list commutators of the indecomposable eight-dimensional nilpotent
one-parametric Lie algebra:

L(a) e, e3] =aes, [e1, e4] =es, [e1,e6] = es, [e2, €3] = e7,
[e3, es] = eg, [e3,e6] = €2, [e4,e6] = €7, 0 < |a] < 1.

This class of Lie algebras also appeared named as £17,13(a) in [6] and the relations among its algebras remained also
unresolved. Isolating one of its points, a = —1, we obtain

inv(£(=1)) (8,5,0)(8,5,2,0)(2,5,8) 4 [19,19,8,9,7, 18]
inv(L@) a#-1 (8,5,0)8,520)2,58) 4 [17,19,8,9,7,18].

s 7

We list the invariant functions ¢, and v, for L(a):

o 0|1
da(a)| 16| 8 |7




216

P. Novotny, J. Hrivndk / Journal of Geometry and Physics 58 (2008) 208-217

a=1 a=-—1 a # %1
o —110 1 o 0 1 -1 o 0 1 —1| —a| —
Yi(e)] 19 | 19| 17| 16| y—1()| 19| 19| 17 | 16| V()| 19| 17| 17 | 17 | 17 |16

Q=

which enables us to conclude that the function v, again represents a priceless instrument providing a complete
description of the presented parametric continuum of Lie algebras.

4. Concluding remarks

e There are several non-equivalent ways of generalizing the notion of derivation of Lie algebra. For example in [5],

a linear operator A € End(L) is called a (o, 7)-derivation of L if for some o, 7 € End(£) and all x, y € L,

Alx, y] = [Ax, ty] + [ox, Ay].
This generalization for the o, T homomorphisms appears already in [7]. If there exists B € der(L) such that for all
x,y € L the condition A[x, y] = [Ax, y] + [x, By] holds, then the operator A forms another generalization [2]. A
more general definition emerged in [8] and runs as follows: A € End(£) is called the generalized derivation of L
if there exist B, C € End(L) such that for all x, y € L the property C[x, y] = [Ax, y] + [x, By] holds.

e Thesets D(1, 1, 0) and D(0, 1, —1) are called centroid and quasicentroid respectively in [8]. The question of under
which conditions these sets coincide has also been discussed.

e Jordan algebra D(1, 1, —1), together with Lie algebras D(0, 1, 1), D(1, 0,0) N D(0, 1, 1), still deserves further
study as regards structure and mutual relations.

e Having a matrix A = (A;;) and structure constants cf.‘j of £ in some basis, then in order to have A € D(«, 8, y)
one has to solve the system of linear homogeneous equations

Z(ozc;';Amk + By Ami + VCipAnj) =0, i, jk=1,2,...,dimL.
m
This shows how the computation of spaces D(«, 8, y) (in fact, due to Theorem 2.2 one parameter is sufficient) and
consequently the function ¥ is comparatively very easy. This computation is also viable in higher dimensions —
as presented in Section 3.3.
e Compared to the extensive usefulness of the function ¥, we haven’t found much use for the invariant function ¢;
the form of the function ¢ is, however, non-trivial and its general behaviour represents an open problem.
e The notion of («, B, y)-derivations and a theorem similar to Theorem 2.2 can be derived for general commutative
or anti-commutative algebra.
e As expected, though function i forms a complete invariant in dimension 3, this is no longer true in dimension
4 (but it still works nicely there), let alone in higher dimensions. It is likely that some characteristics similar to
the invariant functions presented, more general perhaps, could complete the scenery of invariants. One can only
encourage such a pursuit as it seems to be the right way to go.
Acknowledgements

The authors are grateful to J. Tolar for numerous stimulating and searching discussions. Partial support by the
Ministry of Education of Czech Republic (projects MSM6840770039 and LC06002) is gratefully acknowledged.
References

[1] L. Abellanas, L. Alonso, A general setting for Casimir invariants, J. Math. Phys. 16 (1975) 1580-1584.

[2] M. Bresar, On the distance of the composition of two derivations to generalized derivations, Glasg. Math. J. 33 (1) (1991) 89-93.

[3] M. Gerstenhaber, Deformations of algebras, Ann. of Math. 79 (1964) 59;  Ann. of Math. 84 (1966) 1; Ann. of Math. 88 (1968) 1.

[4] M. Goze, J. Bermudez, On the classification of rigid Lie algebras, J. Algebra 245 (2001) 68-91.

[5] J. Hartwig, D. Larsson, S. Silvestrov, Deformations of Lie algebras using o -derivations, 2003. Available online: math.QA/0408064.

[6] J. Hrivndk, P. Novotny, J. Patera, J. Tolar, Graded contractions of the Pauli graded s/(3, C), Linear Algebra Appl. 418 (2-3) (2006) 498-550.
[7] N.Jacobson, Lie Algebras, Dover, New York, 1979.

[8] G. Leger, E. Luks, Generalized derivations of Lie algebras, J. Algebra 228 (2000) 165-203.

[9] M. de Montigny, J. Patera, Discrete and continuous graded contractions of Lie algebras and superalgebras, J. Phys. A 24 (1991) 525-547.


http://arxiv.org//arxiv:math.QA/0408064

P. Novotny, J. Hrivndk / Journal of Geometry and Physics 58 (2008) 208-217 217

[10] P. Novotny, J. Hrivndk, On associated algebras of a Lie algebra and their role in its identification, in: H.-D. Doebner, V.K. Dobrev (Eds.), Lie
Theory and its Application in Physics VI, 2006, pp. 321-326.

[11] J. Patera, R. Sharp, P. Winternitz, H. Zassenhaus, Invariants of real low dimensional Lie algebras, J. Math. Phys. 17 (1976) 986-994.

[12] J. Patera, H. Zassenhaus, The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of type A,,_1, J. Math. Phys. 29
(1988) 665-673.

[13] R. Popovych, V. Boyko, M. Nesterenko, M. Lutfullin, Realizations of real low-dimensioal Lie algebras, J. Phys. A 36 (2003) 7337-7360.

[14] D. Rand, P. Winternitz, H. Zassenhaus, On the identification of Lie algebra given by its structure constants I. Direct decompositions, Levi
decompositions and nilradicals, Linear Algebra Appl. 109 (1988) 197-246.

[15] L. Snobl, P. Winternitz, A class of solvable Lie algebras and their Casimir invariants, J. Phys. A 31 (2005) 2687-2700.



	On  (alpha, beta, gamma) -derivations of Lie algebras and corresponding invariant functions
	Introduction
	 (alpha, beta, gamma) -derivations
	Properties and structure of  (alpha, beta, gamma) -derivations
	Intersections of the spaces  D (alpha, beta, gamma) 
	Examples of  (alpha, beta, gamma) -derivations

	Invariant functions
	Definition and properties of functions  psi  and  phi 
	Application of the invariant function  psi  to three-dimensional Lie algebras
	Application of the function  psi  to some eight-dimensional Lie algebras

	Concluding remarks
	Acknowledgements
	References


